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LETTER TO THE EDITOR 

Supersymmetric quantum mechanics of fermions minimally 
coupled to gauge fields 
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t Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, 
Santiago, Chile 
$ Centro de Estudios Cientificos de Santiago, AV Presidente Errazuriz 3132, Casilla 16443, 
Santiago, Chile 

Received 10 November 1987 

Abstract. The supersymmetric extension of the system consisting of a relativistic scalar 
particle interacting with a gauge field is discussed. The construction is based on the 
ground-state wavefunction representation for supersymmetric quantum mechanics. We 
exploit the fact that any system invariant under spacetime reparametrisations has a vanishing 
Hamiltonian. 

In a recent article, Ui [ I ]  has shown that a Dirac particle coupled to a gauge field in 
three spacetime dimensions possesses a supersymmetry analogous to Witten's super- 
symmetric quantum mechanics (SSQM) [2]. In this letter we show that Ui's conclusion 
can be generalised to any number of dimensions, provided the supersymmetry gen- 
erators are appropriately defined. The extension to include non-Abelian gauge fields 
is discussed as well. 

The construction given below is based on a scheme originally proposed by Gozzi 
[3] to discuss the hidden supersymmetry of one-dimensional quantum mechanical 
systems. This scheme was later extended to an arbitrary number of degrees of freedom 
[4,5]. Here we will briefly summarise the method which is discussed in greater detail 
in [5], and then apply it to the case of a relativistic particle in the background of a 
gauge field. 

Because of the invariance under time reparametrisation, the classical Hamiltonian 
of a generally covariant system can be written as a linear combination of first-class 
constraints Xa = O  in the form [6]: 

H = N"(x)%,(x) dD-'x=O 
J a  

where a = I; 1 , .  . . , n S D -  1; D is the number of spacetime dimensions; N" are 
Lagrange multipliers. The constraint Xl generates timelike reparametrisation and is 
responsible for the dynamical evolution. The remaining constraints X r  generate space- 
like reparametrisations that leave the states of the system unchanged; these are gen- 
erators of gauge transformations with no dynamical effect [ 6 ] .  Hamiltonians of the 
form ( 1 )  describe systems like the relativistic particle interacting with various fields, 
strings, membranes and gravitation. 
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Dirac’s prescription [ 7 ]  to construct the corresponding quantum theory calls for 
the substitution of the first-class constraint functions Xa by operators &,, and the 
constraint equations Xa = 0 by conditions on the physical states, +, of the Hilbert space 

tia* = 0. (2) 

This implies, in particular 

A*=O (3) 
and, therefore, the physical states of a quantum system of this type can be viewed as 
belonging to the (degenerate) ‘ground state’ of a system in D+ 1 dimecsions (the new 
extra dimension being a fictitious time, A, in the Schrodinger equation H+ = i(a/aA)$). 
This interpretation, however, is not quite correct as it stands: the operator H for any 
of the systems mentioned above is generically hyperbolic and not elliptic, as it should 
be for a genuine Schrodinger equation. This fact, due to the Minkowskian signature 
o,f spacetime, is responsible for the non-uniqueness of + and makes the spectrum of 
H unbounded from below andAabove. However, passing to Euclidean space via a 
Wick rotation t + it = t E ,  turns H into an elliptic differential operator and the analogy 
with quantum mechanics can be exploited to construct the supersymmetric extension 
of the bosonic theory following the pattern of [3-51. Finally, the supersymmetric 
extension of the original theory in Minkowski space is obtained by undoing the Wick 
rotation at the end, t E +  tE/ i  = t. 

Now let us consider the case of a relativistic particle interacting with an Abelian 
gauge field in D-dimensional Minkowski space. The classical Hamiltonian constraint 
is, in Euclidean space, 

X E = $ [ ( p ,  -eA,)2+ U2]==0 (4) 
where U ( x )  is a real scalar function, which is included here for greater generality 
( U ( x )  = m =constant, for the simplest case). According to Dirac’s prescription, we 
write, for the quantum theory, 

&q0 = 0. ( 5 )  

Here is the operator version of (4), and (5) is the Schrodinger equation for the 
ground state (with ground-state energy renormalised to zero). In the Schrodinger 
representation (i, = ia,), the wavefunction Yo takes the form 

qo(x)  = exp( - V )  ( 6 )  

where V is a real function related to U by the Ricatti equation: 

a, va, v - a,a, v = U:. (7)  
The contour of integration C in ( 6 )  is any trajectory that reaches the point x and is 
chosen so as to avoid the sources of A,. (A different choice of contour might change 
To by a non-trivial phase (Aharonov-Bohm effect). Differentiability requires that qo 
be defined on source-free open neighbourhoods only and, therefore, such contours 
always exist.) As usual, the gauge symmetry is guaranteed by the invariance of (5) 
under the simultaneous changes A, + A,, +a& q0+ exp(--ieA)Y0, for arbitrary local 
functions A(x) .  Substitution of ( 7 )  in the expression for &‘E provides the ground-state 
representation 

(8) 2 -_ 
E - :o:Q, 
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with 

Q,=V,+a,V (9a) 

QL = -V, +a,v (96) 

V, = a ,  +ieA, = -i( p ,  - eA,). 

8 = Q,Y,@T- 8’ = QLY,OT+ ( 1 1 )  

and 

(10) 

Next, following Gozzi [3,4], we define the superchanges as 

where T+=(: A), T-=(: :) and the y ,  are the Dirac matrices appropriate for D- 
dimensional Euclidean space?. This ansatz generalises the form of the supercharges 
proposed elsewhere for supersymmetric non-relativistic quantum mechanics ( SUSYQM) 

[4,9]. Following those ideas, the supersymmetric extension of (8) is 

&‘,“’=;{Q’, Q}. (12) 
This new (supersymmetric) Hamiltonian can be directly checked to be invariant under 
transformations generated by Q and Qt: 

and, obviously 

[ &.(,“), &‘,“’I = 0. 

Relations (12)-( 14) are the graded algebras of the supersymmetric system consisting 
of a (relativistic) spin-; particle interacting with an external electromagnetic field. 
From (lo)-( 12) the explicit form of the superHamiltonian constraint can be found. 
After rotating back to Minkowski space, it becomes 

(15 )  

where L,, =: a, Vp, - a,Vp, and F,” = a,A, - a,A,. In the absence of an electromag- 
netic field (F,” =O), equation (15 )  reduces to the Hamiltonian constraint for a spin-: 
particle in a scalar potential U ( x )  (‘variable mass’) [5]. The term *apYL, generalises 
the spin-orbit coupling found in non-relativistic SUSYQM [4]. The interaction term 
ieap“F,, is the usual Pauli coupling which exhibits the correct magnetic moment for 
an electron. (It is curious that supersymmetry naturally requires the gyromagnetic 
factor, g, to be exactly 2. The fact that radiative corrections make g slightly different 
from this value can be viewed as an indication that this supersymmetry is dynamically 
broken when the electromagnetic field is also quantised.) 

We now summarise the changes that occur in the above discussion if the gauge 
field is non-Abelian. The vector potential A, is to be replaced by the matrix-valued 
field A, = AlB,, where T, are the generators of some compact Lie group (e.g., SU( N ) ) .  
Then, replacing the covariant derivative V, by V, =a,+ig[A,, 3 ,  the form of %(”’ 
appropriate for this case is found as$ 

3 1 QL Q’ - d‘”LCly  - :eap”F,,. 0 &(S) = - [ 0 QwQL + C T ~ ” L , ~  - ~eap”F,,  2 

%(’) = Tr{ 4, Q} (16) 

t The Euclidean Dirac matrices are Hermitian and satisfy {y:), ykE’} = 26,,, w ,  v = 0, 1, . . . , D - 1 .  Their 
commutator is [y:’, y;“’] = 2io:E,‘, where oLE: is also Hermitian. For conventions see, e.g., [8]. 
$ Note that the Dirac matrices in Minkowski space y, = (iybE’, ylE’) are not Hermitian, so that the 
supercharges and Q&, are mapped into 8 and @ respectively, where 8 # 8’ in Minkowski space. 
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where the trace is performed over gauge group indices (Tr(T,Tb) = &). The rest of 
the algebra closes as before and the explicit form of (16) is that of (15) where V, is 
replaced by V, and F,,, by IF,, =a,A,, -a,,A, +ig[A,, A,]. In other words, supersym- 
metry and gauge symmetry do not mix. 

The authors are grateful to E Gozzi and R Hojman for many useful comments and 
discussions. One of us (JG) would like to further thank R Hojman for the generous 
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part by the Fondo Nacional de Ciencias, Chile. 
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